Chem. Ber. 104, 1512-1517 (1971)

Horst Gnichtel, Stephanie Exner, Horst Bierbüße und Marga Alterdinger

Chemie der Amino-oxime, VI¹⁾

Reaktionen der syn- und anti-a-Amino-ketoxime mit Thiophosgen

Aus dem Institut für Organische Chemie der Freien Universität Berlin (Eingegangen am 5. Februar 1971)

Aus syn- ω -Amino-acetophenonoximen (1) und Thiophosgen bilden sich 6-Thioxo-dihydro-4H-1.2.5-oxadiazin-Derivate (2). Sie sind in die entsprechenden Oxo-Verbindungen (3) überführbar. anti- α -Amino-ketoxime (6) bilden dagegen 2-Thioxo- Δ^3 -imidazolin-3-oxide (7), deren Struktur aus dem IR- und Massenspektrum bestimmt wurde. 2-Thioxo-5-methyl-4-phenyl- Δ^3 -imidazolin-3-oxid (7a) wurde in das sauerstoff-freie Imidazolinthion (8a) übergeführt.

The Chemistry of Amino Oximes, VI¹⁾

The Reaction of syn- and anti-a-Aminoketoximes with Thiophosgene

syn- ω -Aminoacetophenone oxime derivatives (1) react with thiophosgene to form dihydro-4H-1.2.5-oxadiazine-6-thione derivatives (2). The latter were transformed into the corresponding keto derivatives (3). anti- α -Aminoketoximes (6) form 2-thioxo- Δ^3 -imidazoline 3-oxides (7), the structure of which was determined by i.r. and mass spectroscopy. 5-Methyl-4-phenyl-2-thioxo- Δ^3 -imidazoline 3-oxide (7a) was converted into the oxygen-free imidazoline thione (8a).

In vorangegangenen Arbeiten wurde über die Umsetzung von *syn*- und *anti-α*-Aminoketoximen mit Aldehyden berichtet ^{2,3)}. Die Oximgruppe reagiert je nach Konfiguration entweder mit ihrem Hydroxyl-Sauerstoff oder ihrem Stickstoff unter Bildung von Oxadiazinen bzw. Imidazolin-*N*-oxiden. Zu Oxadiazinonen führte die Umsetzung von *syn*-Amino-oximen mit Phosgen ¹⁾.

In der vorliegenden Arbeit wird die Bildung von Heterocyclen aus *syn*- und *anti*-α-Amino-oximen mit Thiophosgen untersucht.

1.2.5-Oxadiazin-Derivate aus syn-α-Amino-ketoximen

Entsprechend der Reaktion mit Phosgen ließen wir auf syn- ω -Amino-acetophenonoxime (1a-c)^{3,4)} Thiophosgen einwirken. Die Umsetzung verläuft so heftig, daß die Temperatur auf -45° gesenkt werden mußte.

In allen Fällen wurde ein Heterocyclus isoliert. Die Bildung eines durchaus zu erwartenden Thioharnstoffes wurde in keinem Fall beobachtet.

¹⁾ V. Mitteil.: H. Gnichtel und S. Thiele, Chem. Ber. 104, 1507 (1971), vorstehend.

²⁾ H. Gnichtel, Chem. Ber. 103, 2411 (1970).

³⁾ H. Gnichtel, Chem. Ber. 103, 3442 (1970).

^{4) 4}a) H. Gnichtel, Chem. Ber. 98, 567 (1965); 4b) H. Gnichtel, Chem. Ber. 99, 1179 (1966).

Bei den erhaltenen Verbindungen $2\mathbf{a} - \mathbf{c}$ handelt es sich um 5.6-Dihydro-4*H*-1.2.5-oxadiazin-thione-(6), entsprechend der Umsetzung mit Phosgen¹⁾. Sie lassen sich in alkalischem Medium zu den entsprechenden 6-Oxo-5.6-dihydro-4*H*-1.2.5-oxadiazinen¹⁾ (3) hydrolysieren. Die gleichen Verbindungen werden erhalten, wenn die Aufarbeitung nicht unter strengstem Feuchtigkeitsausschluß geschieht. Hieraus läßt sich ein Rückschluß auf die Struktur **2** herleiten.

Aus den spektroskopischen Daten können die Elemente der Oxadiazin-thion-Struktur abgeleitet werden. Für Thioamid-Gruppierungen in Ringen haben R. und R. Mecke⁵⁾ die charakteristischen Zuordnungen untersucht, so daß hier ein Vergleich mit den Verbindungen 2a—c möglich ist. Besonders das Oxazolidin-thion-(2) (4) ist zum Vergleich geeignet, dessen sämtliche fünf charakteristischen Schwingungen der Thioamidgruppe in 2a—c auftreten (Tab. 1). Die Oxim-Hydroxylgruppe ist nicht mehr vorhanden. Aus der N—O-Valenzschwingung kann auf einen Oxadiazinring geschlossen werden. Die Absorption der Thiongruppe schließt eine Thiolform 5 aus; eine SH-Absorption tritt nicht auf. Auch der Grote-Nachweis⁶⁾ weist auf eine Thiongruppierung hin.

Tab. 1. IR-Absorptionen (cm⁻¹) in KBr

	NH(st)	C = N(st)	ΝΗ(δ)	C-N(st)	C = S(st)	N-O(st)	ΝΗ(γ)
2a	3200	1739	1572	1282	1139	969	730
2 b	3200	1729	1570	1275	1138	964	719
2c	3200	1719	1568	1270	1140	968	725
4 5)	3268		1533	1290	1171		694

Die UV-Absorptionen der Oxadiazinthione 2 liegen erwartungsgemäß längerwellig als die der Oxoverbindungen $3^{1)}$. Im Massenspektrum tritt nur ein schwacher Molekülpeak auf (1-6%); die Spektren sind denen der Oxoverbindungen 3 vergleichbar. So tritt der Peak $(M-COS)^+$ bei 2b, c mit etwa 4% auf, der Peak COS^+ mit 30-40% bei allen drei Verbindungen 2. Den Basispeak bildet das jeweilige Benzonitril; das Fragment $CH_2=NH^+$ ist mit etwa 20% vertreten. Die den Oxadiazinonen entsprechende Fragmentierung 1^0 bestätigt ebenfalls die Struktur 2.

⁵⁾ R. Mecke jr. und R. Mecke sen., Chem. Ber. 89, 343 (1956).

 ^{6) 6}a) J. Grote, J. biol. Chemistry 93, 25 (1931); 6b) M. J. Hollmann und Th. de Jonge, E. Mercks Jahresberichte 61/62, 259 (1947/48).

Reaktion von anti-α-Amino-ketoximen mit Thiophosgen

Für die Untersuchungen wurden *anti*-α-Amino-propiophenonoxim (**6a**)⁴⁾ und das von *Dornow* und *Marquardt*⁷⁾ beschriebene 1-Amino-1-phenyl-propanonoxim (**6b**) eingesetzt. Auch **6b** liegt in der *anti*-Amino-oxim-Form vor, wie die Komplexbildung mit Schwermetall-Ionen ^{8,9)} der chromatographisch einheitlichen Verbindung beweist.

Die Umsetzung der Amino-oxime mit Thiophosgen und Triäthylamin in Tetrahydrofuran wurde bei -65° vorgenommen, da bei höherer Temperatur starke Dunkelfärbung eintrat und die Isolierung von Reaktionsprodukten nur schwer möglich war.

$$\mathbf{a}: \mathbf{R}^1 = \mathbf{CH_3}, \ \mathbf{R}^2 = \mathbf{C_6H_5}; \ \mathbf{b}: \mathbf{R}^1 = \mathbf{C_6H_5}, \ \mathbf{R}^2 = \mathbf{CH_3}$$

7a, b erwiesen sich als 2-Thioxo- Δ^3 -imidazolin-3-oxide. Beide liegen in der Thionform vor, wie das Schwefelreagenz nach $Grote^6$ zeigt. Das IR-Spektrum weist keine SH-Absorption auf; auch im NMR-Spektrum findet sich kein SH-Proton. Die IR-Absorptionen der Thioamidgruppe, wie sie für cyclische Thioharnstoffe in der Literatur zugeordnet wurden 5,10, treten bei beiden Verbindungen auf (Tab. 2).

Die Nitrongruppierung ist sowohl durch das IR-Spektrum (Tab. 2) wie durch die Farbreaktion von *Coats* und *Katritzky*¹¹⁾ nachweisbar.

	NH(st)	C = N(st)	NH(8)	N→O(st)	C=S(st)
7a	3120	1646	1512	1253	1208
8a	3080	1640	1513		1211
7 b	3100	1636	1486	1169	1145

Tab. 2. IR-Absorptionen (cm⁻¹) in KBr

7a verliert bereits beim Trocknen im Vakuum und durch Kochen in Alkohol Sauerstoff. Die entstehende Verbindung mit der Zusammensetzung $C_{10}H_{10}N_2S$ und dem massenspektrometrisch bestimmten Molgewicht 190 ist das Imidazolinthion 8a. Im IR-Spektrum unterscheidet sich 8a von 7a durch das Fehlen der Nitronbande (Tab. 2).

⁷⁾ A. Dornow und H.-H. Marquardt, Chem. Ber. 97, 2169 (1964).

⁸⁾ P. Pfeiffer und J. Richarz, Ber. dtsch. chem. Ges. 61, 104 (1928).

⁹⁾ R. K. Murmann, J. Amer. chem. Soc. 79, 521 (1957).

¹⁰⁾ R. Gompper und H. Herrlinger, Chem. Ber. 89, 2825 (1956).

¹¹⁾ N. A. Coats und A. R. Katritzky, J. org. Chemistry 24, 1836 (1959).

Die leichte Abgabe von Sauerstoff bei den Verbindungen 7 bestätigt sich im Massenspektrum (Tab. 3). Den Basispeak stellt das Imidazolinthion (8), das unter Austritt von HNCS das Azirin-Ion 9 bildet.

m/e	Fragment		% relat. Intensitäten	
		7 a	8a	7b
206	M+	32.2		51.8
190	$(M - O)^+$	100.0	100.0	100.0
131	9	39.8	15.5	29.4
103	$C_6H_5-CN^+$	11.9	9.6	18.8
77	$C_6H_5^+$	11.0	11.9	14.1
44	$C = S^+$	11.9	15.5	9.4

Tab. 3. Massenspektren

8a zeigt ein dem Nitron 7a analoges Massenspektrum (Tab. 3). Die Strukturen von 7a, b werden also auch von dieser Seite bestätigt.

Dornow und Marquardt⁷⁾ erhielten durch Verseifen des Thion-urethans von **6b** eine Verbindung, die sie als 4-Methyl-5-phenyl-2-mercapto-5*H*-imidazol-3-oxid (**10**) auffaßten. Sie ist mit dem von uns erhaltenen **7b** identisch, das eine Thioamid-Struktur hat. Die Tatsache, daß sich die Imidazolinthion-*N*-oxide in wäßrigem Alkali lösen, ist nach Walter¹²⁾ kein Beweis für eine Thiol-imid-Form (**10**).

Beschreibung der Versuche

Die Schmpp, sind im Kofler-Schmelzpunkt-Mikroskop bestimmt. Für die Aufnahmen der NMR-Spektren wurde der NMR-Spektrometer Varian 60 A (TMS als innerer Standard), für die Massenspektren der Varian M 66-Massenspektrometer benutzt.

6-Thioxo-3-phenyl-5.6-dihydro-4H-1.2.5-oxadiazin (2a): 0.01 Mol syn-ω-Amino-acetophenon-oxim¹³⁾ (1a) werden in 150 ccm absol. Tetrahydrofuran und 3.3 ccm Triäthylamin gelöst und unter Rühren bei —40 bis —45° innerhalb von 5 Stdn. 0.76 ccm (0.01 Mol) Thiophosgen in 50 ccm Tetrahydrofuran zugetropft. Danach läßt man innerhalb 12 Stdn. auf 0° erwärmen und saugt das ausgeschiedene Triäthylammoniumchlorid ab; mit 3 ccm Tetrahydrofuran wird nachgewaschen (2.3 g; 84%). Die Lösung wird unter Feuchtigkeitsausschluß (!) i. Vak. zur Trockne gedampft und der Rückstand mit 6 ccm trockenem Aceton versetzt. Die ausgeschiedenen Kristalle liefern (aus Aceton) 0.6 g (31%) 2a vom Schmp. 121°.

¹²⁾ W. Walter, Z. Chem. 10, 371 (1970).

¹³⁾ S. Gabriel und G. Eschenbach, Ber. dtsch. chem. Ges. 30, 1127 (1897).

 R_F 0.68 (Kieselgel F_{254} ; Benzol/Dioxan 2:1).

UV (Äthanol): λ_{max} 282 nm (lg ϵ 3.63).

IR (KBr): 3200 (m), 1739 (m), 1572 (m), 1500 (w), 1282 (m), 1139 (s), 969 (m), 730/cm (m).

NMR (Aceton-d₆): τ 2.35 (m, 5H), 5.4 (d, 2H).

6-Thioxo-3-p-tolyl-5.6-dihydro-4H-1.2.5-oxadiazin (2b): Analog 2a aus 1b1). Ausb. 58%; Schmp. 124° (Aceton).

C₁₀H₁₀N₂OS (206.3) Ber. C 58.22 H 4.89 N 13.58 S 15.54 Gef. C 58.12 H 4.95 N 13.62 S 15.59 Mol.-Gew. 206 (Massenspektrum)

R_F 0.72 (Kieselgel F₂₅₄; Benzol/Dioxan 2:1).

UV (Äthanol): λ_{max} 284 nm (lg ϵ 4.18).

IR (KBr): 3200 (m), 1729 (m), 1570 (ss), 1512 (m), 1275 (s), 1185 (m), 1138 (s), 964 (s), 819 (s), 719/cm (w).

NMR (Aceton-d₆): τ 2.47 (q, 4H), 5.47 (s, 2H), 7.6 (s, 3H).

6-Thioxo-3-[p-methoxy-phenyl]-5.6-dihydro-4H-1.2.5-oxadiazin (2c): Analog 2a aus 1c¹⁾; Ausb. 58%; Nadeln (Aceton) vom Schmp. 128°.

C₁₀H₁₀N₂O₂S (222.3) Ber. C 54.03 H 4.53 N 12.60 S 14.03 1 OCH₃ 13.96 Gef. C 53.54 H 4.57 N 12.52 S 14.56 OCH₃ 14.11 Mol.-Gew. 222 (Massenspektrum)

R_F 0.87 (Kieselgel F₂₅₄; Benzol/Dioxan 2:1).

UV (Äthanol): λ_{max} 289 nm (lg ϵ 4.45).

IR (KBr): 3200 (m), 1719 (m), 1605 (s), 1568 (ss), 1515 (m), 1270 (s), 1140 (s), 1029 (s), 968 (m), 725/cm (w).

NMR (Pyridin- d_5): τ 2.58 (q, 4H), 5.46 (s, 2H), 6.32 (s, 3H), 7.28 (s, 1H).

6-Oxo-3-phenyl-5.6-dihydro-4 H-1.2.5-oxadiazin (3a): Wird die Tetrahydrofuranlösung des Reaktionsansatzes von 1a mit Wasser versetzt oder unter Wasserstrahlvak. eingedampft, so isoliert man aus dem Rückstand durch Zugabe von Äther 0.6 g (34%) 3a, farblose Nadeln vom Schmp. 163° (Lit.1): 164–165°).

Bei der Umsetzung von 1b entstehen analog 0.55 g (29%) 6-Oxo-3-p-tolyl-5.6-dihydro-4H-1.2.5-oxadiazin (3b) vom Schmp. 162° (Lit. 1): $162-163^{\circ}$).

Analog aus 1c 700 mg (34%) 6-Oxo-3-[p-methoxy-phenyl]-5.6-dihydro-4H-1.2.5-oxadiazin (3c), Nadeln (Äthanol) vom Schmp. 168° (Lit.1): 168-169°).

2-Thioxo-5-methyl-4-phenyl-\$\Delta^3\$-imidazolin-3-oxid (7a): Eine Lösung von 2.46 g (15 mMol) anti-a-Amino-propiophenonoxim (6a)\(^{4a}\) und 4.2 ccm Tri\(^{4a}\)thylamin in 50 ccm Tetrahydrofuran und eine zweite Lösung von 1.15 ccm Thiophosgen in 50 ccm Tetrahydrofuran werden w\(^{4a}\)three in 200 ccm auf -65° gek\(^{4a}\)thes Tetrahydrofuran eingetropft. Dann wird noch 1 Stde. ger\(^{4a}\)three in, innerhalb von 3 Stdn. auf 0° erw\(^{4a}\)tru und \(^{4a}\)the Nacht im K\(^{4a}\)thischrank belassen. Das Tri\(^{4a}\)thylammoniumchlorid (2.6 g) wird abgesaugt, mit etwas THF gewaschen und die L\(^{4a}\)sung bei 25-30° i. Vak. zur Trockne gebracht. Das zur\(^{4a}\)ckleibende schaumige Produkt wird mit wenig kaltem \(^{4a}\)thanol gewaschen, wobei die gelb\(^{4a}\)theside Verunreinigung bevorzugt in L\(^{4a}\)sung geht. Aus wenig \(^{4a}\)thanol 1.55 g (52\(^{4a}\)) gelblichwei\(^{4a}\)e Kristalle vom Schmp. 195-198°.

C₁₀H₁₀N₂OS (206.3) Ber. C 58.22 H 4.88 N 13.58 Gef. C 58.02 H 4.86 N 13.38 Mol.-Gew. 206 (Massenspektrum) UV (Äthanol): λ_{max} 217 nm (lg ϵ 4.05), 271 (4.18), 287 (4.17).

IR (KBr): 3120 (ss), 2943 (s), 1646 (m), 1512 (ss), 1460 (s), 1253 (s), 1208 (m), 753 (s), 694/cm (s).

NMR (Pyridin-d₅): τ 7.78 (d, 3H), 2.51 (m, 6H), -3.32 (s, 1H).

2-Thioxo-5-methyl-4-phenyl-∆3-imidazolin (8a): Aus 7a durch Kochen in Äthanol oder durch längeres Erhitzen auf 100°/1 Torr. Bräunliche Prismen, Schmp. 315—317° (Zers.).

C₁₀H₁₀N₂S (190.3) Ber. C 63.11 H 5.25 N 14.71

Gef. C 63.02 H 5.07 N 14.42 Mol.-Gew. 190 (Massenspektrum)

UV (Äthanol): λ_{max} 219 nm (lg ϵ 3.98), 273 (4.15), 292 (4.17).

IR (KBr): 3080 (ss), 2935 (ss), 1640 (s), 1596 (s), 1513 (ss), 1211 (ss), 759 (ss), 692/cm (s).

anti-1-Amino-1-phenyl-propanonoxim (6b): Die Vorschrift von Dornow und Marquardt⁷⁾ wurde wie folgt variiert: In 375 ccm Wasser werden 53.0 g (0.75 Mol) Hydroxylammonium-chlorid und 70 g (0.38 Mol) 1-Amino-1-phenyl-propanon-hydrochlorid⁷⁾ unter gelindem Erwärmen gelöst. Dann wird schnell eine 100° heiße Lösung von 124 g (1.5 Mol) wasserfreiem Natriumacetat in 300 ccm Wasser unter Rühren zugegeben. Über Nacht kristallisieren 48 g (62%) 6b-Acetat aus.

45 g (0.2 Mol) des rohen **6b**-Acetats werden durch Erwärmen auf dem Wasserbad in 350 ccm Wasser gelöst; die Temp. darf 75° nicht übersteigen. Zur filtrierten Lösung werden 25 ccm Na_2CO_3 sicc. in 120 ccm Wasser zugefügt und viermal mit je 70 ccm Chloroform extrahiert. Die Extrakte werden nach Trocknen (Na₂SO₄) i.Vak. zur Trockne gedampft. Aus Petroläther/Chloroform 32 g (52 %) Nadeln vom Schmp. 72° (Lit. 7): 74°). Es ist ratsam, nur p.a. Reagentien zu verwenden.

1R (KBr): 3338 (ss), 3275 (m), 1662 (w), 1590 (ss), 1492 (s), 1452 (s), 1362 (s), 1025 (s), 932 (s), 759 (m), 698/cm (ss).

NMR (Aceton-d₆): τ 8.37 (s, 3H), 8.21 (d, 2H), 5.31 (s, 1H), 2.62 (m, 5H).

2-Thioxo-4-methyl-5-phenyl-∆3-imidazolin-3-oxid (7b): Analog 7a; Ausb. 63%, schwach gelbliche Kristalle (Äthanol) vom Schmp. 200—201° (Zers.) (Lit. 7): 210° (aus wäßr. Methanol).

 $C_{10}H_{10}N_2OS$ (206.3) Ber. C 58.22 H 4.88 N 13.58

Gef. C 58.27 H 4.85 N 13.58 Mol.-Gew. 206 (Massenspektrum)

UV (Äthanol): λ_{max} 218 nm (lg ϵ 4.00), 267.5 (4.09), 296 (4.14).

IR (KBr): 3100 (ss), 1636 (m), 1486 (ss), 1403 (s), 1169 (s), 1145 (m), 771 (ss), 734 (s), 702/cm (s).

NMR (Pyridin- d_5): τ 7.61 (s, 3 H), 2.57 (m, 6 H), -3.6 (s, 1 H).

[34/71]